In one of the previous articles, I wrote about SOLID — great principles for developing great apps. But what is the Dependency Injection (DI) pattern, and why I mentioned SOLID?

What is the Dependency Injection (DI) pattern?

DI is a pattern that makes a class independent of its dependencies.

Let’s do some code:

Don’t forget about D (dependency inversion) principle from SOLID:

So why is DI important?

The common mistake that every young programmer makes is:

Or even worse:

It means that dependencies of your class rule it. DI pattern prevents it.

FoxMiner shouldn’t care about creating its dependencies. If you remember the first principle of SOLID — Single responsibility. You can interpret this as even creating any other objects inside the class breaking this principle. 

If FoxMiner creates MinerPick on its own, then the programmer can’t check the entire logic of FoxMiner class. The writing test process will be like hell hard. Someone else should create and then inject an instance of MinerPick (not an instance of that particular class, to be exact, but a mock of it).

It is easier to test logic when you can inject dependencies outside of the class:

So you can easily replace all dependencies with mock classes, and writing tests will be a fun process.

Ok, but who will create the necessary instances of classes?

Usually, we rely on the DI framework. Then it is the framework that will responsible for creating class instances.

DI framework

Let me introduce Swinject — a lightweight dependency injection framework for Swift.

For example, we have a bunch of protocols and classes:

and

Swinject is very simple in use. First, we should have a container that will register all our Protocols:

let container = Container()

Now let’s register some protocol and its realization:

container.register(Food.self) { _ in HotDog(name: "hot dog") }

Now when we want to get an object that matches to Food protocol, we call:

let foodObject = container.resolve(Food.self)!

We also can inject inside of registration process:

container.register(Person.self) { r in
    Buyer(pet: r.resolve(Food.self)!)
}

Now in code:

let buyer = container.resolve(Person.self)!
person.eat() // prints "I'm eating hot dog."

Services must be registered to a container before they are used. Services must be registered to a container before they are used. So you can register them in AppDelegate. Also, it is better to use a facade for the Swinject container so you can change the framework for injection whenever you want.

If you don’t want to use a third-party library, then definitely you should check out this library, as your own solution will be like Swinject in the end anyway.

Latest articles here

API-First Development: The Key to Faster, More Reliable Software Delivery.

API-First Development: The Key to Faster, More Reliable Software Delivery

A shift occurred in the 2010s, when companies began to view APIs, Application Programming Interfaces, as an independent solution instead of only...

The Difference between Classic App and Blockchain App

The Difference Between Classic App and Blockchain App

If you want to build an app for your business, you can face a dilemma – what is the best approach to developing centralized or decentralized...

Tech Stack of Prominent Companies.

Tech Stack of Prominent Companies: What Are Industry Giants Using to Power Their Applications?

Netflix vs. Hulu, Hubspot vs. Salesforce, Spotify vs. Pandora, Databrick vs. ByteDance, Canva vs. Miro, and Uber vs Lyft are the rivalries that...

Go to blog